MiRduplexSVM: A High-Performing MiRNA-Duplex Prediction and Evaluation Methodology

نویسندگان

  • Nestoras Karathanasis
  • Ioannis Tsamardinos
  • Panayiota Poirazi
چکیده

We address the problem of predicting the position of a miRNA duplex on a microRNA hairpin via the development and application of a novel SVM-based methodology. Our method combines a unique problem representation and an unbiased optimization protocol to learn from mirBase19.0 an accurate predictive model, termed MiRduplexSVM. This is the first model that provides precise information about all four ends of the miRNA duplex. We show that (a) our method outperforms four state-of-the-art tools, namely MaturePred, MiRPara, MatureBayes, MiRdup as well as a Simple Geometric Locator when applied on the same training datasets employed for each tool and evaluated on a common blind test set. (b) In all comparisons, MiRduplexSVM shows superior performance, achieving up to a 60% increase in prediction accuracy for mammalian hairpins and can generalize very well on plant hairpins, without any special optimization. (c) The tool has a number of important applications such as the ability to accurately predict the miRNA or the miRNA*, given the opposite strand of a duplex. Its performance on this task is superior to the 2nts overhang rule commonly used in computational studies and similar to that of a comparative genomic approach, without the need for prior knowledge or the complexity of performing multiple alignments. Finally, it is able to evaluate novel, potential miRNAs found either computationally or experimentally. In relation with recent confidence evaluation methods used in miRBase, MiRduplexSVM was successful in identifying high confidence potential miRNAs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SVM-based miRNA: MiRNA∗ duplex prediction

We address the problem of predicting the miRNA:miRNA* duplex stemming from a microRNA (miRNA) hairpin precursor and we present a SVM-based methodology to address it. Predicting the miRNA:miRNA* duplex is a first step towards identifying the mature miRNA, suggesting possible miRNA targets and ultimately, reducing experimentation effort, time, and cost. We measure the error in terms of the absolu...

متن کامل

Comprehensive overview and assessment of computational prediction of microRNA targets in animals

MicroRNAs (miRNAs) are short endogenous noncoding RNAs that bind to target mRNAs, usually resulting in degradation and translational repression. Identification of miRNA targets is crucial for deciphering functional roles of the numerous miRNAs that are rapidly generated by sequencing efforts. Computational prediction methods are widely used for high-throughput generation of putative miRNA targe...

متن کامل

Learning to Predict miRNA-mRNA Interactions from AGO CLIP Sequencing and CLASH Data

Recent technologies like AGO CLIP sequencing and CLASH enable direct transcriptome-wide identification of AGO binding and miRNA target sites, but the most widely used miRNA target prediction algorithms do not exploit these data. Here we use discriminative learning on AGO CLIP and CLASH interactions to train a novel miRNA target prediction model. Our method combines two SVM classifiers, one to p...

متن کامل

TAPIR, a web server for the prediction of plant microRNA targets, including target mimics

UNLABELLED We present a new web server called TAPIR, designed for the prediction of plant microRNA targets. The server offers the possibility to search for plant miRNA targets using a fast and a precise algorithm. The precise option is much slower but guarantees to find less perfectly paired miRNA-target duplexes. Furthermore, the precise option allows the prediction of target mimics, which are...

متن کامل

MirPlex: a tool for identifying miRNAs in high-throughput sRNA datasets without a genome.

MicroRNAs (miRNAs) are a class of small non-coding RNA (sRNA) involved in gene regulation through mRNA decay and translational repression. In animals, miRNAs have crucial regulatory functions during embryonic development and they have also been implicated in several diseases such as cancer, cardiovascular and neurodegenerative disorders. As such, it is of importance to successfully characterize...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015